Ray Tracing
and
Radiosity

Reading Material

MUST read
* These slides
 OH 102-113 by Magnus Bondesson
— Ray Tracing, ray/polygon intersection, Radiosity
 OH 264-280

— Computational Geometry (berakningsgeometri)
— Voronoi regions, Delaunay triangulation (las bada 6versiktligt)

— Marching Cubes
— CSG (Constructive Solid Geometry)

May also read:

* Angel, chapter 12
— (12.6,12.7 och 12.8 &r dverkurs)

What is ray tracing?

e Another rendering algorithm

- Fundamentally different from polygon rendering
(using e.g., OpenGL)
- OpenGL

e renders one triangle at a time

e Z-buffer sees to it that triangles appear "sorted” from
viewpoint
e Local lighting --- per vertex

— Ray tracing
e Renders one pixel at a time
e Sorts per pixel
e Global lighting equation (reflections, shadows)
e Per pixel

What Is the point ofi ray tracing ?
e Higher quality rendering

— Global lighting equation (shadows, reflections,
refraction)

— Accurate shadows, reflections, refraction
-~ More accurate lighting equations

e |s the base for more advanced algorithms
— Global illumination, e.g., photon mapping

e |t is extremely simple to write a (naive)
ray tracer

e A disadvantage: it is inherently slow!

Again: it IS simple to write a ray.
tracer! A |la Paull Heckbert

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{

vec cen,color;double rad,kd,ks,kt kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
05,.2,.85,0.,1.7,-1.,8.,-5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,- 5,.1,.8,.8,
1.,.3,.7,0.,0.,1.23.,6.,15.1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,

1 5 000 515Yvxdoubleubtminsart) tan():double vdot(A Blvec A
1 onU U Ul o aouble U, D, tmMin, sgrip,tanaouble VaoltA, 5)Vec A

,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(

vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>07?sqgrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:

tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;

struct sphere*s,*1;if(!level--)return black;if(szintersect{P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;I=sph+5;while(I-->sph)if((e=I
->kI*vdot(N,U=vunit(vcomb(-1.,P,I->cen))))>0&&intersecttP,U)==I)color=vcomb(e
I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>@7trace(Jevel,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks trace(Ievel,P,vcomb(2*d,N,D)),vcomb(s->kd,

color,vcomb(s->kl,U,black)))); ymain(){printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.2=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf(*'%.0f %.0f %.0f\n",U);}/*minray!*/

Which rendering algorithm will win
at the end of the day?

e Ray tracing or polygon rendering?
e Ray tracing is:
- Slow
— But realistic
— Therefore, focus is on creating faster algorithms, and
possible hardware
e Polygon rendering (OpenGL) is:
— Fast (simple to build hardware)
— Not that realistic
— Therefore, focus is on creating more realistic images
using graphics hardware
e Answer: right now, it depends on what you
want, but for the future, no one really knows

Side by side comparison
Images courtesy oi Eric Haines

To be physically correct, follow
photons frem light sources...

e Not what we do for a simple ray tracer

— Though this is almost what we do for more
advanced techniques (photon mapping)

Image plane Light source

<

e Not effective, not many rays will arrive at
the eye

Follow photens backwards from
the eye: treat one pixel at a time

e Rationale: find photons that arrive at each pixel
e How do one find the visible object at a pixel?
e \With intersection testing

- Ray, r(t)=o+td, against geometrical objects

- Use object that is closest to camera!

— Valid intersections have t > 0

— tis a signed distance
Image plane

S

Closest intersection point

Finding closest point of
Intersection

Naively: test all geometrical objects in the
scene against each ray, use closest point
— Very very slow!

e Be smarter:
— Use spatial data structures, e.g.:
— Bounding volume hierarchies
— Octrees
- BSP trees
— Grids (not yet treated)
— Or a combination (hierarchies) of those

e See Advanced Computer Graphics, EDA425,
for more

trace() and shade()

e \We now know how to find the visible object at a
pixel

e How about the finding the color of the pixel?

e Basic ray tracing is essentially only two

functions that recursively call each other
— trace() and shade()

e trace(): finds the first intersection with an
object and calls shade() for the hit point

e shade(): computes the lighting at that
Intersection point

trace() and shade():

Recursion _ Point is in shadow
light trace()

Image plane \
EE -shade()

E trace()

—

trace()

‘hade

e First call trace() to find first intersection

e trace() then calls shade() to compute
lighting

e shade() then calls trace() for reflection and
refraction directions

trace() in detail

Color trace(Ray R)
{
float t; bool hit;
Object O;
Color col;
Vector P,N; // point & normal at intersection point
hit=fFindClosestiIntersection(R, &t,&0);
iIT(hit)
{
P=R.origin() + t*R.direction();
N=computeNormal (P,0);
// Tlip normal 1f pointing In wrong dir.
IT(dot(N,R.direction()) > 0.0) N=-N;
col=shade(t,0,R,P,N);
ks
else col=background color;
return col;

shade () computes lighting

e For now, we will use the simple standard
lighting equation that we used so far

e Ambient+Diffuse+Specular

e However, we also spawn new rays in the:
- Reflection and
— Refraction direction

e Can use more advanced models
- Simple to exchange --- a strength of ray tracing

shade() in detail

Color shade(Ray R, Mtrl &m, Vector P,N)

{

Color col;
Vector N,P,refl,refr;
for each light L
{

iT(not 1nShadow(L,P))

col+=DiffuseAndSpecular();

+
col+=AmbientTerm();
if(recursed too _many times()) return col;
refl=reflectionVector(R,N);
col+=m.specular_color()*trace(refl);
refr=computeRefractionVector(R,N,m);
col+=m.transmission_color()*trace(refr);
return col;

Who calls trace() or shade()?

e Someone need to spawn rays

— One or more per pixel

- A simple routine, raytracelmage(), computes rays,
and calls trace()for each pixel.

™
RN
\i\\\\
N N
\\\\\\\\\
\\ NN N
RN
AN RSN
NN
\\ RN
N

N
e Use camera parameters to compute rays
- Resolution, fov, camera direction & position & up

When does recursion stop?

e Recurse until ray does not hit something?
— Does not work for closed models

e One solution is to allow for max N levels of
recursion

N=3 is often sufficient (sometimes 10 is sufficient)

e Another is to look at material parameters

E.g., if specular material color is (0,0,0), then the object
is not reflective, and we don’t need to spawn a reflection

ray
More systematic: send a weight, w, with recursion
Initially w=1, and after each bounce,
w*=0.specular_color(); and so on.

Will give faster rendering, if we terminate recursion when
weight is too small (say <0.05)

Known as Heckbert’s method

Refraction:

Need a transmission direction vector,

e N, I, t are unit vectors

e 1, & n, are refraction indices
® C,=Co0s(04)=-n"I

e Decompose | into:

® |, =-CN, I,en=I+CyN

e t=sin(6,)m - cos(6,)n, where
® M=l lllperpl|=(1+C,N)/sIN(6,)

A nl
N

i 61 'I
Perp

<P

Modified by UIf Assarsson, 2004

Known as Heckbert’s method

Refraction: ,
|
=

c,=cos(9,)=-n'i
. . . . 0, i
® i, =CiN, i, =i+cN Sin(Bz)m

perp
t:sin(ez)m cos(9,)n, where v
¢ perp/”Iperp” (|+Cln)/5|n(91) y

e Use Snell’s law:
- sin(0,)/sin(0,)=n,/M, =M
e =>t=1sIn(0,) (I+c,n)/sin(0,) - cos(6,)n,
e le,t=mi+ (Nc,-C,) N, where c,=cos(6,)
e Simplify: c,=sgrt[1 - n?(1-c,2)]
- Pythagoras: cos(6,)? = 12 - sin(6,)
- sin(6,) =N sin(0,)
= Sin(OZ)Z = 1"l2 (1-COS(@1)2) Modified by UIf Assarsson, 2004

Image W|th a refractive object

Some refraction indices, n

Measured with respect to vacuum
— Air: 1.0003

- Water: 1.33

— Glass: around 1.45 — 1.65

— Diamond: 2.42

—- Salt: 1.54

— Lead (bly): 2.6

e Note 1: the refraction index varies with
wavelength, but we often only use one index
for all three color channels, RGB

e Note 2: can get Total Internal Reflection (TIR)

— Means no transmission, only reflection
— Occurs when c, is imaginary (see formula 2 slides back)

In trace(), we need a function
findClosestintersection()

e Use intersection testing (from a previous
lecture) for rays against objects

e Intersection testing returns signed distance(s),
t, to the object

e Use the t that iIs smallest, but >0

e Naive: test all objects against each ray
— Better: use spatial data structures (more later)

e Precision problems (exaggerated):

light
’ The point, p, will be incorrectly
< self-shadowed, due to imprecision
Eye ray Solution: after p has been computed,

update as: p’=p+en
point of Intersection: (n is normal at p, ¢ is small number >0)

In shade (), we need a function
I1nShadow()

e Compute distance from intersection
point, p, to light source: t

e [hen use intersection:

— Pointis in shadow if 0 <t<t__ is true for at
least one object

max

More Info...

e This was ray tracing at it simplest

e \We can do lots more...
- Faster
— More realistic
— Better filtering and sampling

-~ More advanced geometry (spheres, cylinder, Bezier
surfaces, etc) — not only triangles

- Programmable shading is easy

e Some nice books on this topic:

— Glassner, An Introduction to Ray Tracing, Academic
Press, 1989.

- Shirley, Realistic Ray Tracing, AK Peters, 2000.

- Jensen, Realistic Image Synthesis using Photon
Mapping, AK Peters, 2001.

Real-Time Ray Tracing

e Low level optimizations

=

— Precomputation of constants per frame, e.q., ray-sphere
test, primary rays

e Low resolution (320x200 — 640x400)
e Adaptive sub sampling
e Frameless rendering (motion blur)

e Others, like reprojection, reuse shading
computations, simple shadows, single-level
reflections...

DEMO

The following slides are from

MIT EECS 6.837, Popovic
http://courses.csail.mit.edu/6.837/lect/October _27.pdf

Radiosity

 Treats fully diffuse indirect illumination
(illumination from fully diffuse reflections)

T

direct illumination 1 bounce 2 bounces
(0 bounces)

images by Micheal Callahan
http://www.cs.utah.edu/~shirley/classes/cs684 98/students/callahan/bounce/

Radiosity

Careful calibration and measurement allows for
comparison between physical scene & simulation

- —=-

photograph simulation

Light Measurement Laboratory
Cornell University, Program for Computer Graphics

Radiosity

Prerequisites:

» Surfaces are assumed to be
perfectly Lambertian (diffuse)
— reflect incident light in all
directions with equal intensity
» The scene iIs divided into a set of
small areas, or patches.

 The radiosity, B;, of patch I Is the
total rate of energy leaving a
surface.

 Units for radiosity:
Watts / steradian * meter2

]
I f
:"_\ f
me. 1HE .

CEN N R
| | |
' | ! i W
> '“-_T'
.-"':..-fr _:T____-——__
i \

Discrete Radiosity Equation

Discretize the scene into n patches, over which the radiosity B; is constant

reflectivity

l

Bz’ = Ez' —+ }O?Z FU Bj
J=1

Y

form factor

n simultaneous equations with n unknown B; values can be written
In matrix form: ; . , T .

1-p 1, -pkFn 0 —pk, B, E,
=Pt 1= p B, | — |k
| -p,F, - 1-pF,| |B| |E,|

A solution yields a single radiosity value B; for each patch in the
environment, a view-independent solution.

Solving the Radiosity Matrix

The radiosity of a single patch 1 is updated for each iteration by
gathering radiosities from all other patches:

This is a Gauss-Seidel method for solving linear equations.

Computing Vertex Radiosities

To get smooth shading

B, radiosity values are
constant over the extent
of a patch.

e How are they mapped to
the vertex radiosities

(Intensities) needed by (B dmen,
the renderer? [——
B _:43.4543.15.: [S
— Average the radiosities of < A
patches that contribute to TG e\ e — 2"
the vertex i AT
— Vertices on the boundary - S T

are assigned radiosity
values by extrapolation

Radiosity

--.-

Museum simulation. Program of Computer Graphics, Cornell
University.

50,000 patches. Note indirect lighting from ceiling.

Radiosity

Factory simulation. Program of Computer Graphics,
Cornell University. 30,000 patches.

Stages 1 a Radiosity Solution

Input Form Factor ‘9()fy_ Why so costly?
Geometry : > 07
- Calculation Calculation &
Reflectance I storage of
Properties Solve the e n” form factors
Radiosity Matrix 10%
Radiosity Solution
Camera l
Position & g | Visualization
Orientation (Rendering) 0%

v

Radiosity Image

MIT EECS 6.837. Popovic

Calculating the Form Factor F;

F;; = fraction of light energy leaving patch j that arrives at patch I

patch j

V, dA. dA,

Form Factor from Ray Casting

o (Cast n rays between the
two patches

— nis typically between 4 and
32

— Compute visibility
— Integrate the point-to-point
form factor

e Permits the computation of
the patch-to-patch form
factor, as opposed to point-
to-patch

One final example image

Lightscape http://www.lightscape.com

	Ray Tracing �and�Radiosity
	Reading Material
	What is ray tracing?
	What is the point of ray tracing?
	Some simple, ray traced images…
	Again: it is simple to write a ray tracer! A la Paul Heckbert
	Which rendering algorithm will win at the end of the day?
	Side by side comparison�Images courtesy of Eric Haines
	To be physically correct, follow photons from light sources…
	Follow photons backwards from the eye: treat one pixel at a time
	Finding closest point of intersection
	trace() and shade()
	trace() and shade():�Recursion
	trace() in detail
	shade() computes lighting
	shade() in detail
	Who calls trace() or shade()?
	When does recursion stop?
	Refraction: �Need a transmission direction vector, t
	Refraction: �
	Image with a refractive object
	Some refraction indices, h
	In trace(), we need a function findClosestIntersection()
	In shade(), we need a function inShadow()
	More info…
	Real-Time Ray Tracing
	Radiosity
	Radiosity
	Radiosity
	Discrete Radiosity Equation
	Solving the Radiosity Matrix
	Computing Vertex Radiosities
	Radiosity
	Radiosity
	Calculating the Form Factor Fij
	Form Factor from Ray Casting
	One final example image

