
Ray Tracing
and

Radiosity

Reading Material
MUST read
• These slides
• OH 102-113 by Magnus Bondesson

– Ray Tracing, ray/polygon intersection, Radiosity
• OH 264-280

– Computational Geometry (beräkningsgeometri)
– Voronoi regions, Delaunay triangulation (läs båda översiktligt)
– Marching Cubes
– CSG (Constructive Solid Geometry)

May also read:
• Angel, chapter 12

– (12.6, 12.7 och 12.8 är överkurs)

Tomas Akenine-Mőller © 2002

WhatWhat is is rayray tracingtracing??
Another rendering algorithm
– Fundamentally different from polygon rendering

(using e.g., OpenGL)
– OpenGL

renders one triangle at a time
Z-buffer sees to it that triangles appear ”sorted” from
viewpoint
Local lighting --- per vertex

– Ray tracing
Renders one pixel at a time
Sorts per pixel
Global lighting equation (reflections, shadows)
Per pixel

Tomas Akenine-Mőller © 2002

WhatWhat is the point of is the point of rayray tracingtracing??
Higher quality rendering
– Global lighting equation (shadows, reflections,

refraction)
– Accurate shadows, reflections, refraction
– More accurate lighting equations

Is the base for more advanced algorithms
– Global illumination, e.g., photon mapping

It is extremely simple to write a (naive)
ray tracer
A disadvantage: it is inherently slow!

Tomas Akenine-Mőller © 2002

SomeSome simple, simple, rayray tracedtraced imagesimages……

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

AgainAgain: it is simple to : it is simple to writewrite a a rayray
tracertracer! A la Paul ! A la Paul HeckbertHeckbert

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/

Tomas Akenine-Mőller © 2002

WhichWhich rendering rendering algorithmalgorithm willwill winwin
at the end of the at the end of the dayday??

Ray tracing or polygon rendering?
Ray tracing is:
– Slow
– But realistic
– Therefore, focus is on creating faster algorithms, and

possible hardware
Polygon rendering (OpenGL) is:
– Fast (simple to build hardware)
– Not that realistic
– Therefore, focus is on creating more realistic images

using graphics hardware
Answer: right now, it depends on what you
want, but for the future, no one really knows

Tomas Akenine-Mőller © 2002

SideSide by by sideside comparisoncomparison
Images Images courtesycourtesy of Eric Hainesof Eric Haines

Tomas Akenine-Mőller © 2002

To be To be physicallyphysically correctcorrect, , followfollow
photonsphotons from light from light sourcessources……

Not what we do for a simple ray tracer
– Though this is almost what we do for more

advanced techniques (photon mapping)
Light sourceImage plane

Not effective, not many rays will arrive at
the eye

Tomas Akenine-Mőller © 2002

FollowFollow photonsphotons backwardsbackwards from from
the the eyeeye: : treattreat oneone pixel at a timepixel at a time

Rationale: find photons that arrive at each pixel
How do one find the visible object at a pixel?
With intersection testing

– Ray, r(t)=o+td, against geometrical objects
– Use object that is closest to camera!
– Valid intersections have t > 0
– t is a signed distance

Image plane

Closest intersection point

Tomas Akenine-Mőller © 2002

FindingFinding closestclosest point of point of
intersectionintersection

Naively: test all geometrical objects in the
scene against each ray, use closest point
– Very very slow!

Be smarter:
– Use spatial data structures, e.g.:
– Bounding volume hierarchies
– Octrees
– BSP trees
– Grids (not yet treated)
– Or a combination (hierarchies) of those

See Advanced Computer Graphics, EDA425,
for more

Tomas Akenine-Mőller © 2002

tracetrace()() and and shadeshade()()

We now know how to find the visible object at a
pixel
How about the finding the color of the pixel?
Basic ray tracing is essentially only two
functions that recursively call each other
– trace() and shade()

trace(): finds the first intersection with an
object and calls shade() for the hit point
shade(): computes the lighting at that
intersection point

Tomas Akenine-Mőller © 2002

tracetrace()() and and shadeshade():():
RecursionRecursion

First call trace() to find first intersection
trace() then calls shade() to compute
lighting
shade() then calls trace() for reflection and
refraction directions

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

Tomas Akenine-Mőller © 2002

tracetrace()() in in detaildetail
Color trace(Ray R)
{

float t; bool hit;
Object O;
Color col;
Vector P,N; // point & normal at intersection point
hit=findClosestIntersection(R,&t,&O);
if(hit)
{

P=R.origin() + t*R.direction();
N=computeNormal(P,O);
// flip normal if pointing in wrong dir.
if(dot(N,R.direction()) > 0.0) N=-N;
col=shade(t,O,R,P,N);

}
else col=background_color;
return col;

}

Tomas Akenine-Mőller © 2002

shadeshade()() computescomputes lightinglighting
For now, we will use the simple standard
lighting equation that we used so far
Ambient+Diffuse+Specular
However, we also spawn new rays in the:
– Reflection and
– Refraction direction

Can use more advanced models
– Simple to exchange --- a strength of ray tracing

Tomas Akenine-Mőller © 2002

shadeshade()() in in detaildetail
Color shade(Ray R, Mtrl &m, Vector P,N)
{

Color col;
Vector N,P,refl,refr;
for each light L
{

if(not inShadow(L,P))
col+=DiffuseAndSpecular();

}
col+=AmbientTerm();
if(recursed_too_many_times()) return col;
refl=reflectionVector(R,N);
col+=m.specular_color()*trace(refl);
refr=computeRefractionVector(R,N,m);
col+=m.transmission_color()*trace(refr);
return col;

}

Tomas Akenine-Mőller © 2002

Who Who callscalls tracetrace()() or or shadeshade()()??
Someone need to spawn rays
– One or more per pixel
– A simple routine, raytraceImage(), computes rays,

and calls trace()for each pixel.

Use camera parameters to compute rays
– Resolution, fov, camera direction & position & up

Tomas Akenine-Mőller © 2002

WhenWhen doesdoes recursionrecursion stop?stop?
Recurse until ray does not hit something?
– Does not work for closed models

One solution is to allow for max N levels of
recursion
– N=3 is often sufficient (sometimes 10 is sufficient)

Another is to look at material parameters
– E.g., if specular material color is (0,0,0), then the object

is not reflective, and we don’t need to spawn a reflection
ray

– More systematic: send a weight, w, with recursion
– Initially w=1, and after each bounce,

w*=O.specular_color(); and so on.
– Will give faster rendering, if we terminate recursion when

weight is too small (say <0.05)

Tomas Akenine-Mőller © 2002

RefractionRefraction: :
NeedNeed a transmission a transmission directiondirection vectorvector, , tt

n, i, t are unit vectors
η1 & η2 are refraction indices
c1=cos(θ1)=-n.i
Decompose i into:
ipar=-c1n, iperp=i+c1n

n

-i

t

θ1

θ2i
ipar

iperp

η1

η2
t=sin(θ2)m - cos(θ2)n, where
m=iperp/||iperp||=(i+c1n)/sin(θ1)

K
no

w
n

as
 H

ec
kb

er
t’s

m
et

ho
d

Modified by Ulf Assarsson, 2004

Tomas Akenine-Mőller © 2002

RefractionRefraction: :

c1=cos(θ1)=-n.i
ipar=-c1n, iperp=i+c1n

n

-i

t

θ1

θ2i -cos(θ2)n

sin(θ2)m

η1

η2

t=sin(θ2)m - cos(θ2)n, where
m=iperp/||iperp||=(i+c1n)/sin(θ1)
Use Snell’s law:

– sin(θ2)/sin(θ1)= η1/η2 = η
=> t = sin(θ2) (i+c1n)/sin(θ1) - cos(θ2)n,
i.e., t = ηi + (ηc1 - c2) n, where c2 =cos(θ2)
Simplify: c2=sqrt[1 – η2(1-c1

2)]
– Pythagoras: cos(θ2)2 = 12 - sin(θ2) 2

– sin(θ2) = η sin(θ1)
– sin(θ2)2 = η2 (1−cos(θ1)2)

K
no

w
n

as
 H

ec
kb

er
t’s

m
et

ho
d

Modified by Ulf Assarsson, 2004

Tomas Akenine-Mőller © 2002

Image with a Image with a refractiverefractive objectobject

Tomas Akenine-Mőller © 2002

SomeSome refractionrefraction indicesindices, , ηη
Measured with respect to vacuum
– Air: 1.0003
– Water: 1.33
– Glass: around 1.45 – 1.65
– Diamond: 2.42
– Salt: 1.54
– Lead (bly): 2.6

Note 1: the refraction index varies with
wavelength, but we often only use one index
for all three color channels, RGB
Note 2: can get Total Internal Reflection (TIR)
– Means no transmission, only reflection
– Occurs when c2 is imaginary (see formula 2 slides back)

Tomas Akenine-Mőller © 2002

In In tracetrace()(), , wewe needneed a a functionfunction
findClosestIntersectionfindClosestIntersection()()

Use intersection testing (from a previous
lecture) for rays against objects
Intersection testing returns signed distance(s),
t, to the object
Use the t that is smallest, but >0
Naive: test all objects against each ray
– Better: use spatial data structures (more later)

Precision problems (exaggerated):

point of intersection: p

eye ray

light
The point, p, will be incorrectly
self-shadowed, due to imprecision
Solution: after p has been computed,
update as: p’=p+εn
(n is normal at p, ε is small number >0)

Tomas Akenine-Mőller © 2002

In In shadeshade()(), , wewe needneed a a functionfunction
inShadowinShadow()()

Compute distance from intersection
point, p, to light source: tmax

Then use intersection:
– Point is in shadow if 0 < t < tmax is true for at

least one object

Tomas Akenine-Mőller © 2002

MoreMore infoinfo……
This was ray tracing at it simplest
We can do lots more…
– Faster
– More realistic
– Better filtering and sampling
– More advanced geometry (spheres, cylinder, Bezier

surfaces, etc) – not only triangles
– Programmable shading is easy

Some nice books on this topic:
– Glassner, An Introduction to Ray Tracing, Academic

Press, 1989.
– Shirley, Realistic Ray Tracing, AK Peters, 2000.
– Jensen, Realistic Image Synthesis using Photon

Mapping, AK Peters, 2001.

Tomas Akenine-Mőller © 2002

RealReal--Time Ray TracingTime Ray Tracing
Low level optimizations
– SSE
– Precomputation of constants per frame, e.q., ray-sphere

test, primary rays

Low resolution (320x200 – 640x400)
Adaptive sub sampling
Frameless rendering (motion blur)
Others, like reprojection, reuse shading
computations, simple shadows, single-level
reflections...

DEMODEMO

The following slides are from
MIT EECS 6.837, Popović

http://courses.csail.mit.edu/6.837/lect/October_27.pdf

Radiosity
• Treats fully diffuse indirect illumination

(illumination from fully diffuse reflections)

direct illumination 1 bounce 2 bounces
(0 bounces)

images by Micheal Callahan
http://www.cs.utah.edu/~shirley/classes/cs684_98/students/callahan/bounce/

Light Measurement Laboratory
Cornell University, Program for Computer Graphics

photograph simulation

Careful calibration and measurement allows for
comparison between physical scene & simulation

Radiosity

Prerequisites:
• Surfaces are assumed to be

perfectly Lambertian (diffuse)
– reflect incident light in all
directions with equal intensity

• The scene is divided into a set of
small areas, or patches.

• The radiosity, Bi, of patch i is the
total rate of energy leaving a
surface.

• Units for radiosity:
Watts / steradian * meter2

Radiosity

Discrete Radiosity Equation
Discretize the scene into n patches, over which the radiosity Bi is constant

n simultaneous equations with n unknown Bi values can be written
in matrix form:

A solution yields a single radiosity value Bi for each patch in the
environment, a view-independent solution.

Solving the Radiosity Matrix

The radiosity of a single patch i is updated for each iteration by
gathering radiosities from all other patches:

This is a Gauss-Seidel method for solving linear equations.

Computing Vertex Radiosities

• Bi radiosity values are
constant over the extent
of a patch.

• How are they mapped to
the vertex radiosities
(intensities) needed by
the renderer?

– Average the radiosities of
patches that contribute to
the vertex

– Vertices on the boundary
are assigned radiosity
values by extrapolation

To get smooth shading

Museum simulation. Program of Computer Graphics, Cornell
University.
50,000 patches. Note indirect lighting from ceiling.

Radiosity

Radiosity

Factory simulation. Program of Computer Graphics,
Cornell University. 30,000 patches.

Calculating the Form Factor Fij

Fij = fraction of light energy leaving patch j that arrives at patch i

Form Factor from Ray Casting
• Cast n rays between the

two patches
– n is typically between 4 and

32
– Compute visibility
– Integrate the point-to-point

form factor

• Permits the computation of
the patch-to-patch form
factor, as opposed to point-
to-patch

Aj

Ai

One final example image

Lightscape http://www.lightscape.com

	Ray Tracing �and�Radiosity
	Reading Material
	What is ray tracing?
	What is the point of ray tracing?
	Some simple, ray traced images…
	Again: it is simple to write a ray tracer! A la Paul Heckbert
	Which rendering algorithm will win at the end of the day?
	Side by side comparison�Images courtesy of Eric Haines
	To be physically correct, follow photons from light sources…
	Follow photons backwards from the eye: treat one pixel at a time
	Finding closest point of intersection
	trace() and shade()
	trace() and shade():�Recursion
	trace() in detail
	shade() computes lighting
	shade() in detail
	Who calls trace() or shade()?
	When does recursion stop?
	Refraction: �Need a transmission direction vector, t
	Refraction: �
	Image with a refractive object
	Some refraction indices, h
	In trace(), we need a function findClosestIntersection()
	In shade(), we need a function inShadow()
	More info…
	Real-Time Ray Tracing
	Radiosity
	Radiosity
	Radiosity
	Discrete Radiosity Equation
	Solving the Radiosity Matrix
	Computing Vertex Radiosities
	Radiosity
	Radiosity
	Calculating the Form Factor Fij
	Form Factor from Ray Casting
	One final example image

